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Relativistic kicked rotor
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Transport properties in the relativistic analog of the periodically kicked rotor are contrasted under classically
and quantum mechanical dynamics. The quantum rotor is treated by solving the Dirac equation in the presence
of the time-periodic J-function potential resulting in a relativistic quantum mapping describing the evolution of
the wave function. The transition from the quantum suppression behavior seen in the nonrelativistic limit to
agreement between quantum and classical analyses in the relativistic regime is discussed. The absence of
quantum resonances in the relativistic case is also addressed.
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I. INTRODUCTION

The study of regular and chaotic motion in periodically
driven dynamical systems has been the subject of extensive
investigation in both theoretical and experimental contexts
[1-7]. The effects of quantization on such systems has also
been explored simultaneously with applications in atomic,
molecular, optical, and mesoscopic systems. Quantization
suppresses classical chaos and the mechanisms for this pro-
vide different experimental signatures in the quantum treat-
ment as compared to the classical case. Among these is the
so-called dynamical localization phenomenon which is
analogous to Anderson localization in solid-state physics
[3,8]. A convenient paradigm for illustrating this and other
effects of suppression is the o-kicked rotor, which can now
be realized experimentally as well [9]. The classical dynam-
ics of the kicked rotor is described by the well-known stan-
dard map [1,6]. This map greatly facilitates the qualitative
treatment of the system. Given the temporal separation of
kinetic and potential terms, the quantum dynamics can also
be represented by a mapping describing the evolution of the
wave function [2].

It should be noted that despite the great progress made in
our understanding of classical chaos and its manifestations
(or lack thereof) in quantum dynamics, the systems studied
have been primarily nonrelativistic. However, the work that
does exist in the literature on relativistic systems suggests
that the modified dynamics could add some interesting twists
in both classical and quantum contexts. At first glance, rela-
tivistic systems appear “more nonlinear” than their nonrela-
tivistic counterparts due largely to the fact that the relativistic
Hamiltonian can be written as the sum of a nonrelativistic
Hamiltonian and an effective potential. Thus, the equations
of motion written in action-angle variables become more
nonlinear than those in the nonrelativistic limit. As we shall
illustrate later, this is not true in general. In addition, the
study of relativistic dynamics is relevant to a variety of sys-
tems in nuclear and particle physics, cosmology, and atomic
and plasma physics.

A recent time-dependent example where relativistic dy-
namical chaos may be exhibited is the case of relativistic
electrons in a plasma accelerated by lasers [10]. These so-
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called wakefield or beat wave accelerators are the subject of
extensive theoretical as well as experimental study [10-13].
The charged particle motion in these accelerators is periodi-
cally driven by the ponderomotive potential [14], and can be
treated in terms of a relativistic kicked particle model. The
inclusion of the role of quantum effects in such an accelera-
tion could also be important though that is less clear at
present.

With this as a broad motivation, we explore features of
both classical and quantum dynamics of the relativistic
kicked rotor. The classical analysis is performed using the
relativistic standard map for which detailed phase space
analysis already exists [15,16]. Our emphasis is on the larger
scale transport properties as embodied in the time depen-
dence of the classical relativistic rotor. The presence of the
relativistic factor now makes it a two-parameter system
which is known to exhibit richer structure in terms of trans-
port kinetics. This further motivates the treatment of the
quantum version with the aim of isolating transitions in be-
havior.

The quantum analysis of the Dirac equation proceeds
along the same lines as in the pioneering work of Casati et
al. [2]. In our case, the result is a quantum mapping describ-
ing the evolution of the four-component spinor wave func-
tion of the kicked rotor. Note that the quantization of the free
relativistic rotor has been considered [17] and the following
three limiting cases defined: (i) an elementary limit in which
the rotor behaves as an elementary (pointlike) particle, (ii) a
classical limit in which it coincides with the classical relativ-
istic rotor and, (iii) a nonrelativistic limit in which it coin-
cides with the nonrelativistic quantum rotor. The first of
these is a trivial limit which is implicitly satisfied in this
work though we will comment on the other two cases in
some detail.

We begin by analyzing the transport in the classical rela-
tivistic rotor in the space of two parameters, the kicking
strength and the relativistic parameter. This is intended to
provide a contrast for the quantum dynamics. The quantum
analysis begins (for completeness) with a solution of the
Dirac equation for the free rotor eigenvalues and eigenfunc-
tions. The addition of a periodic drive is then assessed, re-
sulting in a quantum map describing the evolution of the
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wave function. This mapping is then used to compute the
evolution of the probability density as well as the time de-
pendence of the energy. The last two sections of the paper
discuss the comparison of classical and quantum evolutions
and the conclusions reached.

II. THE CLASSICAL RELATIVISTIC KICKED ROTOR

As is well known [1,3], the phase space evolution of the
nonrelativistic classical kicked rotor is described by the non-
relativistic standard map. A single parameter measuring the
strength of the kicking term governs the dynamics which,
beyond a well-defined threshold, shows no barriers to un-
bounded motion in momentum. The resulting diffusion in
energy is one of the quantities suppressed on quantizing the
dynamics. The relativistic generalization of the kicked rotor
problem can also be treated using the corresponding relativ-
istic standard map which has been studied extensively on the
basis of phase space analysis including phase space structure
as well as resonance overlap [15,16]. By contrast, we are
interested in the time dependence of the energy and transport
properties of the classical relativistic kicked rotor dynamics.

The relativistic extension of the classical standard map
can be obtained [15] by considering the motion of the rela-
tivistic electron in the field of an electrostatic wave packet
given by

E(x,t) = E, > sin(kx - not). (1)

n=—0

The equations of motion for this system have the same form
as those for the relativistic d-kicked classical rotor:

de_oH___ pet 2)
dr ap V/m2c4+p2c2’
dp  oH .
d_lt) === eEOn:E_w sin(kx — nwt)
21 - 2n
= “—¢E, sin(kx) >, 5<t— —>, 3)
w n=—00 w

Integrating these equations over one kick results in the rela-
tivistic generalization of the standard map [15]

K
P, =P,— —sin27wX,), (4)
2
P
Xn+1 =Xn + /%5 (5)
Vl +EP'HI
where
47eEgk w
K=—""—, B=_. (6)
MW ke

As is seen from Egs. (4) and (5) the relativistic standard map
is a two-parameter map involving K and 8, where S is de-
fined as a relativistic factor based on the group velocity w/k.
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FIG. 1. Time dependence of the classical relativistic kicked ro-
tor energy for weak relativistic (a) and ultrarelativistic (b) regimes.
In (a) the two curves correspond to B=0.01 (solid) and 0.000 01
(dashed), respectively. In (b) the solid line corresponds to 8=0.1
while the dashed line deals with the resonance case (8=1/2). In
all cases, K=5.0.

It is clear that this map reduces to the nonrelativistic standard
map in the limit S—0 whereas the limit S—1 is the ul-
trarelativistic limit.

Two-parameter maps, in general, display a richer variety
of behavior. Of particular interest is the well-known result
that boundaries to transport can reform with variation of the
two parameters, resulting in parameter windows of bounded
and unbounded motion. Earlier work [15,16] discussed as-
pects of this trend in terms of phase space whereas we will
consider the transport behavior to assess the full extent of
this behavior. In particular, it is clear from the map that as
the momentum grows, the system becomes more integrable
for any nonzero value of 8. Of course, this occurs at smaller
values of momentum as B gets larger. Thus, in the relativistic
standard map, energy growth is limited by the presence of
invariant curves at higher momenta.

The transport properties are computed by starting from a
line in momentum space, iterating the classical map and con-
structing the phase space averaged energy. Figure 1 shows
the time-dependent variation of the energy for a range of
values. Figure 1(a) considers the weakly relativistic regime
while Fig. 1(b) deals with the ultrarelativistic regime. Figure
1 makes clear that the diffusion of the energy is greatly sup-
pressed as B increases.

Resonances exist in the relativistic standard map at spe-
cial values [15] of B=1/27N where the energy growth takes
considerably longer to saturate. This is what is shown by the
dashed line in Fig. 1(b) where the continued growth of the
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FIG. 2. Phase portraits of the relativistic kicked rotor: (a) non-
resonant (B8=0.1) and (b) resonant (8=1/21r) parameter values. As
before, K=5.0.

energy is seen. By contrast, it is highly suppressed when the
value of 8=0.1 which is less than S=1/27. However, the
diffusion is not unlimited even for the resonance case and
ultimately saturates for longer times.

Thus the suppression of the energy growth in the classical
relativistic kicked rotor depends on the value of the param-
eter B. For smaller values of B8 which are close to O the
growth of the energy is linear and suppression occurs only at
very long times. At intermediate B values, the energy grows
(not necessarily linearly) for some time, beyond which it
saturates. For higher values still (starting from around A
=0.1) and excluding resonance cases the growth of the en-
ergy is quickly suppressed. The differences between resonant
and nonresonant scenarios is clear from the differences in
phase space as seen in Fig. 2. Despite the larger value of f3,
the dynamics reaches higher values of momentum in the case
of resonance, though it ultimately saturates.

As noted earlier, the relativistic standard map is a two-
parameter map which suggests the existence of a richer va-
riety of behavior as the two parameters are varied. In order to
illustrate this feature, we consider the transport exponent «
defined by the long-time variation of energy with time, i.e.,
E(1) ~t* for large t. As is clear from our discussion thus far,
this exponent clearly varies with both K and 8. We compute
this exponent for a range of values in K- 8 space and plot the
exponent as a function of the two parameters. As seen from
Fig. 3, this provides a clear snapshot of the changes in kinet-
ics.

The small-3 regime (note the logarithmic scale) is domi-
nated by diffusive behavior though there are clear lines of
suppression even for the smallest values of 8 where nonrel-
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FIG. 3. Behavior of the classical kicked rotor in the K- 3 plane.
For each value, the transport exponent a where E(r) «ct* is plotted.
Thus the extremes of 0 and 1 correspond to saturation and diffusion,
respectively.

ativistic behavior is anticipated. This is the result of accel-
erator modes in the nonrelativistic standard map (B8=0)
which quickly drive the iterates of the mapping to higher
momenta, where integrable dynamics sets in. Thus, we en-
counter the peculiar phenomenon that the accelerator modes
in the nonrelativistic standard map, of which the higher-order
ones are hard to compute, are more clearly visible in the
relativistic version of the same mapping.

The transition boundary between diffusion and saturation
(a=0), for fixed K and changing B, varies with K. In the
regime where a=0, there appear narrow vertical windows of
diffusive growth in energy. These correspond to the classical
resonances mentioned earlier. Having provided a synopsis of
the variability of classical transport in the two-parameter
space, we now proceed to our primary focus of quantum
treatment in the same system.

III. THE DIRAC EQUATION FOR THE FREE ROTOR

The solution for the nonrelativistic quantum kicked rotor
is written as a basis expansion in terms of the free rotor states
and we proceed in an analogous manner in the relativistic
problem. Though the nonrelativistic solutions are readily
available in almost any graduate textbook [18], the same is
not true for the relativistic counterpart. As such, for com-
pleteness, we begin by considering the solutions of the Dirac
equation for the free rotor and the explicit forms of eigen-
values and eigenfunctions. We note that despite the fact that
the quantization of the relativistic free rotor has been consid-
ered before [17,19-21], the solution of the Dirac equation
has not yet been obtained in explicit form.

Thus the wave equation we want to solve is

(a-p+pP=ED, (7

wherea=(g g), ,8=((I) _0,) are the usual Dirac matrices; p
=id/d0 is the rotor momentum, @ its angular position, and
(ID:()“;). Note that the system of units m=h=c=1 is used
throughout.
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So, for the components ¢ and y we have

S

-px+e¢=Eg,
(8)

Qv

pe-x=Ex.
Expressing y in terms of ¢ we obtain the second-order dif-
ferential equation 2223

ngoz (E2 -1o )
or
1Pe 1
_Eﬁ:E(Ez—l)cpzsgo (10)
where
8:%(152—1). (11)

Solving this equation we can construct the solution of Eq.

(7):

0
0
(I>n=Nn((Pn>=N,, L0 e’ (12)
Xn 0+E,
n_
0+E,

with normalization constant

1
N, =—
" 241 +0%(1 + E,)?]

(13)

and energy eigenvalues
En=w1+n2. (14)

It is clear from Egs. (12) and (11) that in the limit n<<1
or, in the usual system of units, n<mc?* (which corresponds
to small rotation energies) both the energy and wave function
go over to their nonrelativistic counterparts.

IV. QUANTUM RELATIVISTIC KICKED ROTOR

We can now proceed to the solution of the relativistic
quantum kicked rotor problem, where the Dirac equation
now has the form

i’;—‘f=ﬁ¢ (15)

where

A

H= APyt B"‘ 805T(I)COS 0 (16)
and

8= 2 &t—mT)

m=—o0

with T being the period of the kicks. The method to be used
for the solution of this equation is the same as in Ref. [2]. We
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expand the wave function ¢(6,7) in terms of the relativistic
free rotor eigenfunctions

WO.0) =2 A (0D, (17)

Over any period T between &- the function kicks the coeffi-
cients A, () evolve freely as

A, (t+T)=A,(t)e EnT (18)

where in order to have a control parameter to govern the
transition from relativistic to nonrelativistic regimes, we re-
write the free rotor energy as

En=ﬂ_2(\’1 +,821’l2— 1)’

with 8=c¢~? and m=h=1.
During the infinitesimal time interval of a kick Eq. (15)
takes the form

ii)—ltp =— g cos 05(1) i, (19)

and the wave functions immediately before and immediately
after [corresponding to times (#+7) and (1+T7), respectively]
the kick are related by

WO,1+T) = (0,1 + T)eK <9, (20)

where K=g,T. Expanding both sides of this equation in
terms of the relativistic free rotor eigenfunctions, we have

DA+ THD,(0) = 2 A1+ T)D,(0)b(K)e™?. (21)

r,s

Here we have used the expression

eiK cos 0 _ 2 bS(K)eisﬁ, (22)

where
by(K) =i*J|(K) = b_(K), (23)

where J; are ordinary Bessel functions of the first kind.
Multiplying both sides of Eq. (21) and taking into account
that

2m
o e nr
do® P.e"?=4aN (1 +—>5 ‘
fo n re . an (1 +E")(1 +Er) n,r+s
(24)
one obtains the relativistic quantum mapping
A1+ T" = 27N, 2 NA (b, (K)
nr .
X\ 14+ ————— |7, 25
( (1+En)(1+E,.))e 25)

where N, and N, are given by Eq. (13). Once again, it is
evident that in the limit n,7<< 1 this relativistic quantum map
coincides with the nonrelativistic one.

It is immediately apparent from the mapping that one as-
pect of the nonrelativistic quantum rotor will not appear in
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FIG. 4. Time dependence of the quantum relativistic kicked in
the weak relativistic (solid line, 8=0.0001) and ultrarelativistic
(dashed line, B=0.1) regimes. For both cases K=10.

the relativistic case. The nonrelativistic quantum rotor exhib-
its quantum resonances corresponding to special values of
the kicking period 7. These are situations where the free
evolution does not randomize the phases at which the kicks
occur and, as a consequence, the resulting wave function is
extended [3]. These resonances do not appear in the quantum
relativistic case as seen from the structure of the mapping
(21). Tt follows simply from the fact that E, are irrational
numbers. This means that there can be no unlimited growth
of energy in the relativistic case.

A key feature of the nonrelativistic quantum kicked rotor
is the suppression of the diffusive growth of energy seen in
the classical dynamics. In that case, the suppression is due to
phase randomization between kicks and the wave function is
localized in a manner analogous to the Anderson model for
the metal-insulator transition [8]. As we have seen from the
earlier results, the energy growth saturates even in the clas-
sical relativistic case, leading to the expectation of strong
localization in the relativistic quantum problem.

The time dependence of the energy can be calculated as

(Ey= 2 E,p(n.1), (26)

where p(n,t)=|A,(1)]%.

In Fig. 4 we contrast the time dependence of the quantum
relativistic kicked energy for representative values of 8 cor-
responding to different regimes. As one can see from this
figure, for smaller values of S the behavior is similar to that
for the nonrelativistic quantum rotor. However, the saturation
occurs much earlier in the relativistic case though we can no
longer interpret this behavior as the suppression of classical
diffusion.

This feature is illustrated in Fig. 5 where classical and
quantum evolutions (in terms of energy dependence on time)
are contrasted for the strongly relativistic (8=0.1) case.
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FIG. 5. Time dependences of quantum (dashed line) and classi-
cal (solid line) rotor energies for 8=0.1,K=15.0.

Aside from fluctuations in the quantum case, there is good
agreement between the quantum and classical energy values
resulting from the near integrability of the dynamics. The
value of B considered was sufficiently large that saturation
occurs in a few kicks.

In the case of the nonrelativistic quantum kicked rotor
localization properties can be quantified by the participation
ratio defined as {=3,p(n,1)?/=,|A,(1)|* taken at large times.
{ varies as K? in the nonrelativistic case when all other pa-
rameters are held fixed. By contrast, the relativistic treatment
exhibits near independence on the parameter K. This is
shown in Fig. 6 where the variation of { with respect to the
parameters K and S is plotted. The K? variation for small 8
is seen while the relativistic regime (8>0.1) shows a much
weaker dependence on K, if any at all. For the parameter
range shown, a plot of the classical exponent « defined ear-
lier shows a clear separation between diffusive and saturated
behavior. The boundary in the classical case coincides well
with the transition to K independence in the quantum param-
eter (.

-

—55 -3 -2
log, 4(B)

FIG. 6. Variation of participation ratio { in the two-parameter
space.
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V. CONCLUSIONS

In summary, we have assessed aspects of both classical
and quantum dynamics for the relativistic kicked rotor with a
focus on the behavior of energy with time and possible sup-
pression in the quantum dynamics. We find that even in the
classical dynamics, the relativistic case shows saturation in
energy growth due to the presence of barriers to transport in
the classical phase space. This occurs even in the case of
classical resonances at 3 values which are inverse multiples
of 27 though the time of saturation can be considerably
longer. An interesting effect was shown for K values for
which accelerator modes exist in the nonrelativistic limit. At
these values, any nonzero value of 8 leads to saturation after
a short time because the classical iterates are driven to higher
momenta quickly. Thus, in a two-parameter diagram of the
transport exponent, higher-order accelerator modes in the
nonrelativistic map are clearly identified by parameter win-
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dows of zero exponent in the midst of otherwise diffusive
behavior.

The quantum dynamics of the relativistic kicked rotor is
studied in terms of a mapping derived from the Dirac equa-
tion. The structure of the mapping immediately suggests the
absence of quantum resonances in the relativistic case. An-
other important difference comes from the fact that, in the
relativistic case, agreement between classical and quantum
dynamics proceeds as for a integrable system. Thus, from the
standpoint of correspondence, the relativistic case is far less
interesting.
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